一种多源地理信息数据融合更新方法
The following article is from 测绘学术资讯 Author 自然资源遥感
引言
自然资源信息化需要把握的重点之一就是突出数据的整合与融合[1]。随着自然资源统筹管理的逐步落实[2-3],各种来源的地理信息数据开始汇集,问题也随之而来——数据在尺度、几何位置和属性等方面存在不一致性,这给自然资源调查监测历史数据建库带来诸多不便。自然资源部颁布的《新型基础测绘试点建设技术大纲》中也特别强调,要将“研究多源(元)数据融合和智能化处理技术”作为一项重要的核心技术研究。因此,要想从多个维度和层次实现对数据的整合与融合,开展多源地理信息数据整合与融合技术的研究显得尤为重要。
目前,数据整合与融合更新的主要方法有: 基于日志的方法、基于变化检测表(影子表)的方法、基于时间戳字段的方法和基于自动匹配的方法[4]。考虑到各种来源的地理信息数据互相之间无权访问更改日志,无权添加影子表或时间戳字段,将比例尺相近的多源地理信息数据进行自动匹配是整合与融合的最彻底、最精确的方法。现有匹配算法可分为几何匹配、拓扑匹配和属性匹配3类[5]。几何匹配方法的优点是可充分利用数据的几何信息和特征,不足之处是多源数据的几何位置往往存在差异[6]; 拓扑匹配克服了几何匹配方法的不足,但是该方法通常需要其他相似特征一起使用[7]; 属性匹配的效率非常高,但是属性匹配方法过于依赖数据模型以及属性数据类型[8]。
本文基于几何与属性匹配理论探讨了点、线、面3种不同类型多源地理信息数据的融合更新方法,并通过省级基础测绘和地理国情数据验证该方法的可行性。
1 研究方法
多源地理信息数据融合更新方法步骤为: 首先,对2套不同来源的地理信息数据进行坐标、格式统一等预处理; 然后,根据空间数据类型对质量检查合格的数据进行图层关联; 再以待更新地理信息数据为源实体构建广义Voronoi图,在此基础上从参考地理信息数据中获取待匹配候选集; 接着,待更新地理信息数据与待匹配候选集进行几何匹配和属性匹配; 最后,基于匹配结果从参考地理信息数据中提取增量数据并完成待更新地理信息数据的融合更新。技术路线如图1所示。
2 关键技术
2.1 候选集获取
通常实体匹配一般需要进行数据预处理、候选集获取、相似度计算、匹配与结果分析等步骤,其中候选集获取是实体匹配需要解决的问题之一。传统的候选集获取方法有缓冲区方法[9]和最小外包矩形(minimum bounding rectangle,MBR)方法[10],但前者存在阈值依赖性过大的问题,后者误匹配或漏匹配较多。考虑到Voronoi图不受目标位置、距离和比例尺等因素影响的优势,采用基于Voronoi图的候选集获取方法。实际生产中为了同时满足点、线、面的应用,本文采用文献[11]改进的广义Voronoi图获取候选集。
基于广义Voronoi图的候选集获取方法思路如下: 首先,将比例尺相对较小的面实体作为源实体(蓝色),另一个数据集作为目标实体(棕色),对源实体构建广义Voronoi图。在此基础上,遍历每个Voronoi多边形,搜索相应的目标实体中的要素作为匹配候选集。3种不同候选集获取方法对比结果如图2所示。与基于缓冲区方法(图2(a))和基于MBR方法(图2(b))相比,利用基于广义Voronoi图方法(图2(c))可快速地得到与源实体对应的候选集搜索区域,搜索范围不重叠,有效地提高了候选集的获取效率并减少不相关要素对候选集的影响。
2.2 几何匹配
几何匹配原理是先度量实体的一个或几个几何特征的相似度,然后通过阈值来判断是否属于同名实体。常见的几何特征包括实体之间的距离、形状描述和方向趋势等,不同匹配算法对这些几何特征在数学描述上略有差异,如点实体匹配多采用距离指标来衡量相似度[12]; 线实体匹配最常用的指标有线的方向、Hausdorff距离和Fréchet距离[13]; 面实体则多利用面的形状特征,主要包括面积、相似度、不变距与质心度等[14]。鉴于省级基础测绘和地理国情数据的特点,本文针对点、线、面3种实体分别采用3种不同的匹配方法。
2.2.1 基于距离与环境的点实体匹配
多源地理信息数据之间经常会出现一方局部区域点实体比较密集,而另一方则比较稀疏,甚至出现一方多点合一,另一方只有一个实体的现象。为提高匹配质量,本文采用基于距离与环境的点实体匹配技术。
2.2.2 基于Fréchet距离和线段模型的线实体匹配
由于多源地理信息数据之间存在采集标准的差异,所以同名对象之间大多是1∶N,M∶1或者M∶N匹配类型,为提高匹配质量,通过建立线段模型,抽象为1∶1匹配类型来处理。
具体思路如下: 首先,将源实体和匹配候选集实体分别在结点(交叉点)处打断; 然后,依据唯一的实体编码将源实体和匹配候选集实体分别进行合并连接; 接着,再将源实体和匹配候选集实体分别在结点(交叉点)处打断; 最后采用文献[13]的方法。
2.2.3 基于空间相似性的面实体匹配
2.3 属性匹配
属性匹配原理是利用不同数据源对相同地理现象的基本性质描述相同或相近的特点。本文鉴于多源地理信息数据属性数据类型和属性表达的内容层面不同,研究了数值、编码和文本3种不同的属性匹配方法。在此基础上利用各种属性项的相似度计算要素的综合相似度。
2.3.1 数值匹配
主要用于计算 integer 型、float 型和double 型的数值之间的相似度,如道路宽度和水库面积等。
2.3.2 编码匹配
编码匹配是通过比较它们前n位的编码是否相同来计算其相似程度。
2.3.3 文本匹配
文本匹配以文本的方式来描述要素的名称和位置等信息。本文考虑属性值漏输或错输的情况从2个方面进行匹配。
2.3.4 综合属性相似度
利用各种属性项的相似度指标计算源实体a和候选匹配实体b的综合属性相似度psa,b。
2.4 增量提取及融合
从多源矢量参考数据中提取图形改变、属性改变、图形和属性改变的3种数据,同时获取对应自然资源监测数据的唯一实体编码,在此基础上完成数据的融合更新。
3 应用与评价
3.1 融合应用
基于江苏省全域2020年度国情监测数据更新2019年度江苏省全域1∶10 000基础测绘数据(重要要素),其中2020年度国情监测数据涉及14个图层,共计191 667个要素,基础测绘数据涉及10个图层,共计441 544个要素。采用本文方法,分类开展了基于几何与属性匹配的多源地理信息数据融合更新实验,具体融合结果如表1所示。
表1 基础测绘数据融合更新结果
分析表1可知,其中居民地及设施要素中的学校、污水处理厂和自来水厂,水系要素中的泵站、水库,境界与行政区要素中的市界、区县界、开发区、保税区、国有农林、牧场和交通要素中的等级公路、汽车站和火车站,地名要素中的乡镇级以上行政地名等13个分类的几何匹配度都在60%以上,所以这些要素可以通过几何与属性匹配的方法完成利用2020年度国情监测数据更新2019年度基础测绘数据(重要要素),而等级河流、干堤和隧道等其他要素由于整体匹配度较低,不建议采用本文融合更新的方法。
实验结果表明,针对几何位置采集标准不一致的点实体匹配,以属性相似度为主,同时辅以距离相似度和环境相似度等条件可提高融合质量; 针对属性高度不吻合的线实体,以其中一方数据的属性为准,通过Fréchet距离等几何匹配方法可实现数据的准确、快速融合; 用空间相似性匹配基于广义Voronoi图方法获取的候选数据集可提高面实体的融合精度。
3.2 匹配质量评价
通常根据匹配精度和匹配效率衡量多源矢量数据匹配算法质量的优劣。目前匹配精度应用最为广泛的评价准则是查全率R、查准率P和综合评价指标F。查全率是指正确匹配的实体数目与数据集全部实体总数的百分比; 查准率是指正确匹配的实体数目与实际检索到的匹配实体数目的百分比,综合评价指标兼顾查全率和查准率; 匹配效率通过评价得到匹配结果所耗费的时间反映[17]。
从国情监测和基础测绘数据中选取部分点、线、面数据进行匹配质量评价。候选集获取的评价以面实体匹配为例,其评价结果如表2所示; 在候选集获取的基础上,点实体、线实体和面实体的匹配评价结果如表3—5所示。分析表2可知,在不考虑创建搜索区耗时的前提下,基于Voronoi图的候选集获取与基于缓冲区或基于MBR的候选集获取相比,不管是在匹配精度(综合评价指标提升约17%)还是在匹配效率(提高近1倍)上都有所提高。分析表3—5可知,采用本文提出的匹配算法虽然匹配效率有所降低,但匹配精度都得到不同程度的提高。特别是线实体的匹配精度,其综合评价指标提高了近50%,点实体和面实体的综合评价指标也提高了约1%和4%。
表2 候选集获取评价
表3 点实体匹配质量评价
表4 线实体匹配质量评价
表5 面实体匹配质量评价
4 结论
针对多源地理信息数据在尺度、几何位置和属性等方面存在不一致性而造成难以融合更新这一现状,提出了一种基于几何与属性匹配的地理信息数据融合更新方法。
1)通过广义Voronoi图获取候选集,有效地提高候选集的获取效率并减少不相关目标对候选集的影响。
2)点实体匹配中引入环境相似度,有效解决了点实体匹配中数据集整体呈强覆盖,而部分密集的区域呈现弱覆盖的匹配问题。
3)线实体匹配前通过建立线段模型,抽象为1∶1匹配类型来处理,可有效提高匹配质量。
4)考虑多个几何特征并结合实体属性进行面实体匹配,可提高M∶N匹配类型的质量。
通过利用2020年度国情监测数据更新2019年度基础测绘数据(重要要素)验证了该方法的可行性。研究成果对监测数据更新模式的探索有一定的借鉴意义。本文匹配方法中用到的权重和阈值多数依赖于人工经验,有待进一步研究。 (原文有删减)
参考文献
地理信息软件的技术进阶与应用创新
[J]. 中国测绘,[本文引用: 1]
Technology advancement and application innovation of geographic information software
[J]. China Surveying and Mapping,[本文引用: 1]
多源地理要素变化识别研究
[J]. 地理空间信息,[本文引用: 1]
Research on the change of multi-source geographical elements
[J]. Geospatial Information,[本文引用: 1]
我国将构建自然资源统一调查监测体系
[J]. 国土资源,[本文引用: 1]
China will build a unified survey and monitoring system for natural resources
[J]. Land and Resources,[本文引用: 1]
地理空间数据增量更新版本化管理方法研究
[J]. 地理空间信息,[本文引用: 1]
Research on versioning management method for incremental update of geospatial data
[J]. Geospatial Information,[本文引用: 1]
多源地理矢量空间数据融合研究
[J]. 测绘通报,[本文引用: 1]
Research on multi-source geospatial spatial data fusion
[J]. Bulletin of Surveying and Mapping,[本文引用: 1]
空间数据相似性研究的若干基本问题
[J]. 测绘科学技术学报,[本文引用: 1]
Research on some fundamental issues of spatial data similarity
[J]. Journal of Geomatics Science and Technology,[本文引用: 1]
一种形状多级描述方法及在多尺度空间数据几何相似性度量中的应用
[J]. 测绘学报,[本文引用: 1]
A shape multilevel description method and application in measuring geometry similarity of multi-scale spatial data
[J]. Acta Geodaetica et Cartographica Sinica,[本文引用: 1]
顾及通名语义的汉语地名相似度匹配算法
[J]. 测绘学报,[本文引用: 1]
Matching algorithm for chinese place names by similarity in consideration of semantics of general names for places
[J]. Acta Geodaetica et Cartographica Sinica,[本文引用: 1]
采用Stroke层次结构模型的道路网匹配方法
[J]. 测绘科学技术学报,[本文引用: 1]
Road network matching method with stroke-hierarchical model
[J]. Journal of Geomatics Science and Technology,[本文引用: 1]
多源矢量空间数据融合处理技术研究进展
[J]. 测绘学报,[本文引用: 1]
Research on the progress of multi-sources geospatial vector data fusion
[J]. Acta Geodaetica et Cartographica Sinica,[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
地图合并技术
[J]. 测绘通报,[本文引用: 1]
Map conflation
[J]. Bulletin of Surveying and Mapping,[本文引用: 1]
改进平均Fréchet距离法及在化简评价中的应用
[J]. 测绘科学,[本文引用: 2]
An improved average Fréchet distance method and application in simplification evaluation
[J]. Science of Surveying and Mapping,[本文引用: 2]
一种利用多维目标分割比的矢量图形匹配算法
[J]. 武汉大学学报(信息科学版),[本文引用: 1]
An efficient matching algorithm based on vector graphics using multi-dimensional object segmentation ratio
[J]. Geomatics and Information Science of Wuhan University,[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
基于空间相似性的面实体匹配算法研究
[J]. 测绘学报,[本文引用: 1]
Areal feature matching algorithm based on spatial similarity
[J]. Acta Geodaetica et Cartographica Sinica,[本文引用: 1]
多源地理信息数据匹配质量评价研究
[J]. 地理空间信息,[本文引用: 1]
Research on quality evaluation of multi-source geographic information data matching
[J]. Geospatial Information,[本文引用: 1]
【原标题】基于几何与属性匹配的地理信息数据融合更新方法
【作者简介】石善球(1980-),男,教授级高级工程师,主要从事测绘地理信息数据处理研究。Email:
【基金资助】江苏省自然资源科技项目“面向国土空间决策支持的智慧江苏时空大数据情势分析”(2020035)
【引用格式】石善球. 基于几何与属性匹配的地理信息数据融合更新方法[J]. 自然资源遥感, 2023, 35(1): 251-257.
- END -
CC、Pix4D、大疆智图、M3D...国内外常用实景三维建模软件电脑配置推荐
谷歌影像、天地图、DEM、土地覆盖数据...这个软件竟然都能下载首次发布!国内首个干涉SAR商业卫星星座数据产品发布